

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Роутер iRZ RUH3

Содержание

1.	Введение	5
	1.1. Описание документа	5
	1.2. Обзор пакета инструкций	5
	1.3. Термины и сокращения	6
2.	Информация об устройстве	7
	2.1. Назначение	7
	2.2. Стандарты связи	7
	2.3. Характеристики аппаратной части	7
	2.4. Соответствие стандартам	8
	2.5. Физические характеристики	9
	2.6. Условия хранения и эксплуатации	9
	2.7. Электрические характеристики	9
	2.8. Характеристики GSM/3G-устройства	.10
	2.9. Меры предосторожности	.10
	2.10. Функциональная схема устройства	.10
3.	Внешний вид и интерфейсы	.12
	3.1. Внешний вид	.12
	3.1.1. Разъемы и внешние элементы	.12
	3.1.2. Расшифровка этикетки устройства	.14
	3.1.3. Индикация роутера	.15
	3.2. Интерфейсы	.17
	3.2.1. Питание	.17
	3.2.2. Последовательный порт (СОМ-порт, разъем DB-9)	.18
	3.2.4. Интерфейс Ethernet	. 13
	3.2.5. USB-интерфейс	.23
	3.2.6. Антенный разъём SMA, GSM/3G-антенна	.23
4.	Подготовка к работе	.25
	4.1. Подключение SIM-карты	.25
	4.2. Доступ к устройству	.27
	4.2.1. Доступ к web-интерфейсу	.28
	4.2.2. Интернет соединение по 3G/GSM-каналу	.29
	4.3. Возврат к заводским настройкам	.29
	4.4. Монтаж устройства	.30
	4.5. Функционал программного обеспечения	.33
5.	Контакты и поддержка	.37

Таблицы

Таблица 2.1. Основные характеристики	7
Таблица 2.2. Стандарты	8
Таблица 2.3. Физические характеристики	9
Таблица 2.4. Диапазон рабочих частот GSM/3G-модуля роутера	10
Таблица 3.1. Расшифровка индикации основной панели роутера RUH3	15
Таблица 3.2. Расшифровка дополнительной индикации в роутере RUH3	16
Таблица 3.3. Назначение контактов разъёма питания	17
Таблица 3.4. Назначение выводов интерфейсного разъёма	18
Таблица 3.5. Назначение контактов разрывного коннектора	19
Таблица 3.6. Назначение контактов Ethernet-разъёма	
Таблица 3.7. Назначение контактов универсального разъёма	23
Таблица 4.1. Описание функционала роутера	33

Рисунки

Рис. 2.1. Функциональная схема роутера RUH3	11
Рис. 3.1. Вид со стороны SIM-карт	12
Рис. 3.2. Вид со стороны антенного разъема	13
Рис. 3.3. Вид со стороны кнопка отключения/включения Интернет-соединения	13
Рис. 3.4. Вид сверху (основная панель индикации)	14
Рис. 3.5. Этикетка изделия	14
Рис. 3.6. Разъем питания	17
Рис. 3.7. Интерфейсный разъём	18
Рис. 3.8. Разрывной коннектор	19
Рис. 3.9. Подключение через интерфейс RS422	20
Рис. 3.10. Подключение через интерфейс RS485	20
Рис. 3.11. Экранирование (интерфейс RS422)	21
Рис. 3.12. Экранирование (интерфейс RS485)	21
Рис. 3.13. Ethernet-разъем	22
Рис. 3.14. Универсальный разъем	23
Рис. 3.15. SMA-разъем и антенны	24

		1
	-	

Рис. 4.1. Блок-схема работы устройства	27
Рис. 4.2. Установочный чертеж	31

1. Введение

1.1. Описание документа

Данный документ является частью «Пакета инструкций по обслуживанию роутера iRZ» и содержит разъяснительную информацию только о технических характеристиках роутера iRZ и некоторые примеры настройки. Для получения более подробной информации см. раздел 1.2.

Версия документа	Дата публикации
1.02	2013-10-29

1.2. Обзор пакета инструкций

Для получения исчерпывающей информации по эксплуатации, необходимо ознакомится с полным комплектом документации по роутерам iRZ. Вся документация на русском языке доступна на сайте www.radiofid.ru в разделе «Поддержка».

Содержание «Пакета инструкций по обслуживанию роутера iRZ»:

- Руководство по эксплуатации роутера iRZ;
- Описание средств управления и мониторинга роутера iRZ;
- Диагностика и методы устранения неисправностей роутера iRZ;
- Руководство по настройке роутера iRZ с помощью USB-накопителя;
- Примеры рабочих конфигураций роутера iRZ:
 - Создание виртуальных сетей и туннелей средствами OpenVPN;
 - Удалённый доступ к СОМ-порту роутера;
 - Защита передаваемых данных средствами IPSec;
 - DynDNS и обход ограничений внешнего динамического IP-адреса;
 - Объединение сетей с помощью GRE-туннелей;
 - Отказоустойчивость уровня сети средствами VRRP;
 - Обеспечение доступа к внутрисетевым службам средствами PortForwarding;
 - Защита локальной сети и сервисов средствами встроенного Firewall;
- Технические условия (ТУ);
- Протокол температурных испытаний;
- Декларация о соответствии.

1.3. Термины и сокращения

Роутер – маршрутизатор iRZ RUH3 Router.

3G – общее описание набора стандартов, описывающих работу в сетях UMTS и GSM: GPRS, EDGE, HSPA;

Сервер – этот термин может быть использован в качестве обозначения для:

- серверной части программного пакета используемого в вычислительном комплексе;
- роли компонента, либо объекта в структурно-функциональной схеме технического решения, развёртываемого с использованием роутера;
- компьютера, предоставляющего те или иные сервисы (сетевые службы, службы обработки и хранения данных и прочие);

Техническое решение – идея, либо документ, описывающие набор технических мер и/или мероприятий, направленных на реализацию конкретной задачи, для воплощения которой используются функциональные возможности используемых в данном решении компонентов, связанных между собой и взаимодействующих друг с другом определённым образом;

Внешний IP-адрес – IP-адрес в сети Интернет, предоставленный компанией-провайдером услуг связи в пользование клиенту на своём/его оборудовании для обеспечения возможности прямой связи с оборудованием клиента через сеть Интернет;

Фиксированный внешний IP-адрес – внешний IP-адрес, который не может измениться ни при каких условиях (смена типа оборудования клиента и др.) или событиях (переподключение к сети провайдера и др.); единственной возможностью сменить фиксированный IP-адрес является обращение в форме заявления к компании-провайдеру;

Аутентификация – процедура проверки подлинности пользователя/клиента/узла путём сравнения предоставленных им на момент подключения реквизитов с реквизитами, соотнесёнными с указанным именем пользователя/логином в базе данных;

Web-интерфейс роутера – средство управления, встроенное в роутер и обеспечивающее возможность контролировать и настраивать его функции, а так же наблюдать за состоянием этих функций;

Удалённое устройство (удалённый узел) – устройство, территориально удалённое от места, либо объекта/узла, обсуждаемого в конкретно взятом контексте.

2. Информация об устройстве

2.1. Назначение

Роутер является многопрофильным радиотехническим абонентским устройством, работающим в сетях сотовой связи GSM/UMTS. Роутер позволяет решать задачи по передаче, приёму, защите информации и поддержке компьютерной сети.

2.2. Стандарты связи

- HSPA (скорость: передачи до 5.76 Мбит/с, приема до 7.2 Мбит/с);
- EDGE;
- GPRS;
- USSD;
- SMS;
- Wi-Fi (опционально, с помощью внешнего адаптера).

2.3. Характеристики аппаратной части

Тип	Характеристика
процессор	ARM920T
динамическое ОЗУ 64 МБ	
объем flash-памяти	8 МБ + возможность расширения до 2 ГБ
разъем Ethernet	10/100Мбит, 100BASE-TX, MDI
разъем СОМ	RS232 (TX, RX, GND)
разрывной коннектор	9GPIO, RS422, RS485
разъем USB	USB 1.1

Таблица 2.1. Основные характеристики

2.4. Соответствие стандартам

Таблица 2.2. Стандарты

Стандарт	Описание
	Ethernet (IEEE 802.x)*
IEEE	Аппаратная часть, обеспечивающая работу роутера в компьютерных сетях Ethernet выполнена в соответствии с рекомендациями международного стандарта IEEE 802.
	RS232 / RS422 / RS485 (EIA-232 / EIA-422 / EIA-485)*
Electronic Industries Alliance	Интерфейс, используемый в роутерах для передачи пользовательских данных разработан в соответствии со стандартом RS232 / RS485, рекомендованным международной Ассоциации Электронной Промышленности - EIA.
	USB*
	Интерфейс Universal Serial Bus (текущая версия – USB 1.1) предназначен прежде всего для подключения к роутеру USB-накопителя. Это позволяет увеличить объем служебной информации, регистрируемой роутером в процессе работы (системный журнал, Status and log → System Log). Так же может быть использован для расширения функционала роутера путём подключения к USB-порту адаптеров USB- Ethernet и USB-COM.

* радиотехническая реализация интерфейсов Ethernet, RS232 / RS422 / RS485 и USB выполнена на основе микроконтроллера производства Atmel (серия 9200)

2.5. Физические характеристики

Таблица 2.3.	Физические	характеристики
--------------	------------	----------------

Тип	Характеристика
Габаритные размеры корпуса (без учёта разъёмов)	не более 162х110х37 мм. (ДхШхВ)
Габаритные размеры изделия (с учётом разъёмов)	не более 162х119х37 мм. (ДхШхВ)
Вес изделия	не более 310 гр
Диапазон рабочих температур	от -30°С до +65°С
Диапазон температуры хранения	от -40°С до +85°С
Допустимая влажность	устройство сохраняет свою работоспособность при относительной влажности не более 80% при температуре 25°С

2.6. Условия хранения и эксплуатации

Устройство должно хранится в сухом, влагозащищённом месте. Должен быть исключён риск влияния статического напряжения (молния, бытовая статика).

Класс защиты от проникновения соответствует IP20 ГОСТ 14254-96.

Допустимая вибрация:

Устройство может сохранять прочностные характеристики при воздействии механических нагрузок, соответствующих 15 степени жесткости для синусоидальной вибрации ГОСТ 30631-99: в аппаратуре, работающей на ходу, устанавливаемой на тракторах и гусеничных машинах и водном транспорте (быстроходные катера, суда на подводных крыльях и т.п.), а также на технологическом оборудовании и сухопутном транспорте, если частота вибрации превышает 80 Гц.

Виброизоляционные элементы отсутствуют.

2.7. Электрические характеристики

Рабочие характеристики электропитания:

- напряжение питания от 8 до 30 В (постоянный ток);
- **т**ок потребления не более:
 - при напряжении питания +12 В 800мА;
 - при напряжении питания +24 В 400мА.

Максимальное рабочее напряжение – 35 В (постоянный ток)

2.8. Характеристики GSM/3G-устройства

Таблица 2.4. Диапазон рабочих частот GSM/3G-модуля роутера

Режим работы	Частота(ы), МГц
GPRS/EDGE	850/900/1800/1900
HSPA (3G)	850/1900/2100

2.9. Меры предосторожности

Ограничения на использования устройства вблизи других электронных устройств:

- выключайте роутер в больницах или вблизи от медицинского оборудования (например: кардиостимуляторов, слуховых аппаратов) – могут создаваться помехи для медицинского оборудования;
- выключайте роутер в самолетах; примите меры против случайного включения;
- выключайте роутер вблизи автозаправочных станций, химических предприятий, мест проведения взрывных работ. Могут создаваться помехи техническим устройствам; на близком расстоянии модем может создавать помехи для телевизоров, радиоприемников

Следует предохранять роутер от воздействия пыли и влаги.

Необходимо соблюдать допустимые нормы питания и вибрации в месте установки устройства.

2.10. Функциональная схема устройства

Основные функциональные узлы роутера:

- разъем питания;
- преобразователь напряжения;
- GSM/3G-модуль;
- SMA-разъем для внешней антенны;
- Микроконтроллер (МК);
- USB-A;
- интерфейс RS232;
- совмещенный блок GPIO с интерфейсами RS422 и RS485;
- Ethernet-интерфейс;
- держатель SIM-карты №1;
- держатель SIM-карты №2;
- блок индикации работы светодиоды.

Рис. 2.1. Функциональная схема роутера RUH3

3. Внешний вид и интерфейсы

3.1. Внешний вид

3.1.1. Разъемы и внешние элементы

Роутер исполнен в промышленном варианте – прочном и лёгком пластиковом корпусе.

Рис. 3.1. Вид со стороны SIM-карт

На рисунке 3.1 цифрами обозначено:

- 1. лоток SIM-карты №1;
- 2. кнопка извлечения лотка SIM-карты №1;
- 3. индикатор работы SIM-карты №1;
- 4. лоток SIM-карты №2;
- 5. кнопка извлечения лотка SIM-карты №2;
- 6. индикатор работы SIM-карты №2;
- 7. универсальный разъём USB Host;
- 8. индикатор приема сигнала;
- 9. панель индикаторов;

Рис. 3.2. Вид со стороны антенного разъема

На рисунке 3.2 цифрами обозначено:

- 10. антенный разъём SMA (Female), подключение GSM-антенны;
- **11.** интерфейсный разъём DB-9, подключение коммуникационного кабеля (интерфейс RS232);
- **12.** разрывной коннектор, 9 контактов GPIO, подключение коммуникационного кабеля (интерфейсы RS422, RS485);
- 13. кнопка сброса настроек;
- 14. сетевой разъём Ethernet;
- 15. разъём питания 6Р6С;

На рисунке 3.3 цифрой обозначено:

16. кнопка отключения/включения Интернет-соединения.

Кнопка Ф совмещена с индикатором и служит для отключения/включения Интернет-соединения без необходимости перезагрузки самого роутера.

Рис. 3.4. Вид сверху (основная панель индикации)

3.1.2. Расшифровка этикетки устройства

Рис. 3.5. Этикетка изделия

3.1.3. Индикация роутера

Индикация роутера расположена в верхней части корпуса (на рисунке 3.1 обозначена цифрой «9», см. также рис. 3.4), на стороне с SIM-картами (на рисунке 3.1 – «3», «6», «8») и у кнопки отключения/включения Интернет-соединения (рис. 3.3 – «16»). Разъяснения значений сигналов и цветов индикаторов приведены в таблице 3.1. В первой колонке для каждого индикатора приводится название и краткое описание его назначение.

	Внешняя основная индикация роутера RUH3					
Цвет Описание		Зелёный	Красный	Мигание (зеленый или красный)	Не горит	
Ĵ	PWR питание	питание подключено		включение устройства	нет питания	
장	LAN локальная сеть	сетевой кабель подключен		передача данных	сетевой кабель отключен	
i	USR1 пользователь- ский режим 1	Зарезервировано для пользовательских функций				
• 2	USR2 пользователь- ский режим 2	Зарезервировано для пользовательских функций				
• 3	USR3 пользователь- ский режим 3	Зарезервировано для пользовательских функций				
	РРР Интернет- сединение	Интернет- соединение подключено			Интернет-соединение отсутствует	
3G	3G режим 3G	работа в 3G- режиме			2G-соединение, либо GSM/3G-модем выключен	

Таблица 3.1. Расшифровка индикации основной панели роутера RUH3

Внешняя дополнительная индикация роутера RUH3							
Цвет Описание		Зелёный		Не горит			
••••	Signal уровень входного сигнала	ооооо отличный прием	ВВВ хороший прием	удов те	•••• влетвори- ельный прием	● нет сигнала/ плохой прием	модем выключен
	SIM 1 локальная сеть	выбрана SIM 1		SIM 1 не используется			
	SIM 2 локальная сеть	выбрана SIM 2		SIM 2 не используется			
	Интернет-сединение	Интернет-соединение установлено Интернет-соединение отсу		тсутствует			

Таблица 3.2. Расшифровка дополнительной индикации в роутере RUH3

* - индикатор совмещен с кнопкой, см. рис 3.3.

3.2. Интерфейсы

3.2.1. Питание

Питание роутера iRZ RUH3 должно осуществляться от стабилизированного блока питания с постоянным напряжением на выходе в диапазоне 8-30 Вольт и максимальным током не менее:

- 800 мА при напряжении питания +12 В;
- 400 мА при напряжении питания +24 В.

В качестве разъёма питания используется стандартный разъем 6P6C («RJ-25»). Описание выводов разъёма представлено в таблице 3.6.

Рис. 3.6. Разъем питания

Таблица 3.3. Назначение контактов разъёма питания

Контакт	Сигнал	Назначение
1	+ U пит.	Положительный полюс постоянного напряжение питания. Защищен предохранителем и схемой защиты от перенапряжений (при подаче на вход напряжения более 30В) и неправильной полярности
2	не используется	-
3	не используется	-
4	не используется	-
5	не используется	-
6	GND	Корпус системы (отрицательный полюс « – »)

3.2.2. Последовательный порт (СОМ-порт, разъем DB-9)

Последовательный порт определяет функционал роутера и позволяет решать задачи телеметрии и телемеханики. Он может быть использован для:

- сбора данных или управления оборудованием по сети средствами дополнительного программного обеспечения;
- соединение двух удалённых устройств с СОМ-интерфейсами через сеть Internet.

В роутере RUH3 последовательные порты реализованы в виде интерфейсов RS232, RS422, RS485. Для подключения COM-порта по интерфейсу RS232 используется разъём DB-9 (рис. 3.7), назначение его выводов представлено в табл. 3.4. Про использование интерфейсов RS422 и RS485 смотрите раздел 3.2.3.

Примечание: С помощью внешних преобразователей может быть получена связь с внешними устройствами по интерфейсу RS422, RS485, CAN

ВНИМАНИЕ! Подключать устройства к последовательному порту роутера разрешается только когда оба устройства находятся в выключенном состоянии

Рис. 3.7. Интерфейсный разъём

Вывод	Сигнал	Направление	Назначение
1	не используется	-	-
2	RS232 - RXD	Device \rightarrow Router	Прием данных
3	RS232 - TXD	Router \rightarrow Device	Передача данных
4	не используется	-	-
5	GND	общий	Корпус системы
6	не используется	-	-
7	RS232 - RTS	Router \rightarrow Device	-
8	RS232 - CTS	Device \rightarrow Router	-
9	не используется	-	-

3.2.3. Разрывной коннектор

Разрывной коннектор (см. рис. 3.8) в роутере RUH3 используется для вывода контактов GPIO, а также последовательно порта в виде интерфейсов RS422 и RS485. Описание выводов разъёма представлено в таблице 3.5.

Рис. 3.8. Разрывной коннектор

Контакт	Направление	Назначение			
1	Router \leftrightarrow Device	GPIO1			
2	Router \leftrightarrow Device	GPIO2			
3	Router \leftrightarrow Device	GPIO3			
4	Router \leftrightarrow Device	GPIO4			
5	Router \leftrightarrow Device	GPIO5			
÷	GND	Корпус системы			
6	Router \leftrightarrow Device	GPIO6			
7	Router \leftrightarrow Device	GPIO7			
8	Router \leftrightarrow Device	GPIO8			
9	Router \leftrightarrow Device	GPIO9			
	при использовании интерфейса RS422				
А	$Device \to Router$	Прием Rx-			
В	$Device \to Router$	Прием Rx+			
Sh	-	Экранирование			
Z	Router \rightarrow Device	Передача Тх+			
Y	Router \rightarrow Device	Передача Тх-			
при использовании интерфейса RS485					
A	$Device \to Router$	полудуплексный обмен в связке с Ү			
В	$Device \to Router$	полудуплексный обмен в связке с Z			
Sh	-	Экранирование			
Z	Router \rightarrow Device	полудуплексный обмен в связке с В			
Y	Router \rightarrow Device	полудуплексный обмен в связке с А			

Таблица 3.5. Назначение контактов разрывного коннектора

На рисунках 3.9 и 3.10 показано подключение через интерфейсы RS422 и RS485. В этом случае, используются контакты правой стороны разрывного коннектора (см. рис 3.8), обозначенные «А», «В», «Z» и «Y». Более подробно об этих контактах смотрите в таблице 3.5.

Рис. 3.9. Подключение через интерфейс RS422

Рис. 3.10. Подключение через интерфейс RS485

На рисунках 3.11 и 3.12 показаны способы экранирования для интерфейсов RS422 и RS485. Для экранирования используется контакт «Sh» на разрывном коннекторе (см. рис. 3.8).

Рис. 3.11. Экранирование (интерфейс RS422)

Рис. 3.12. Экранирование (интерфейс RS485)

3.2.4. Интерфейс Ethernet

Интерфейс Ethernet выполнен с использованием стандартного разъёма 8P8C («RJ-45»). Описание выводов разъёма представлено в таблице 3.6.

Рис. 3.13. Ethernet-разъем

Таблица 3.6	Назначение контактов	Ethernet-разъёма
-------------	----------------------	------------------

Контакт	Сигнал	Направление	Назначение
1	ETX P	Router \rightarrow PC	Передача, положительный полюс
2	ETX N	Router \rightarrow PC	Передача, отрицательный полюс
3	ERX P	$PC \rightarrow Router$	Прием, положительный полюс
4	не используется	-	-
5	не используется	-	-
6	ERX N	$PC \rightarrow Router$	Прием, отрицательный полюс
7	не используется	-	-
8	не используется	-	-

3.2.5. USB-интерфейс

USB-интерфейс выполнен с использованием стандартного разъёма USB-A «female», и работает в соответствии со спецификацией стандарта USB 1.1. Описание выводов разъёма представлено в таблице 3.7.

Рис. 3.14. Универсальный разъем

a

Контакт	Сигнал	Назначение
1	VBUS	+5 вольт для питания периферийных устройств
2	D-	дифференциальный сигнал данных
3	D+	дифференциальный сигнал данных
4	GND	цепь «корпуса» для питания периферийных устройств

3.2.6. Антенный разъём SMA, GSM/3G-антенна

Для подключения антенны на роутере предусмотрен разъём типа SMA.

При выборе антенны, прежде всего, следует обратить внимание на позиции, ориентированные для работы в сети UMTS, т.к. роутер RUH3 разработан прежде всего для работы в сетях UMTS. Модели других антенн, также обеспечат нормальную работу в сетях операторов сотовой связи, но не смогут обеспечить полноценное использование функционала роутера, и каналы связи будут ограничены по скорости.

Одним из важных моментов, влияющих на качество работы вычислительного комплекса, построенного на базе GSM-роутеров, является процесс подключения антенны к устройству. Перед подключением антенны рекомендуется установить/проверить следующие параметры:

- качество исполнения разъёма антенного кабеля;
- длина кабеля и чувствительность антенны;
- назначение антенны (например, miniGSM-антенны не всегда подойдут для решения задач, требующих широкую пропускную способность канала).

Рис. 3.15. SMA-разъем и антенны

Для упрощения процесса определения качества связи в таблице 3.8 приведена примерная оценка уровня GSM/3G-сигнала.

Примечение: Не рекомендуется использовать слишком длинный антенный кабель. При использовании кабеля RG-58U следует учитывать коэффициент затухания сигнала в нём, из расчёта ~1 dB на метр

Напоминание: Если при эксплуатации уровень сигнала низкий, либо возникают проблемы со связью, то следует обратиться к документу «Диагностика и методы устранения неисправностей»

4. Подготовка к работе

4.1. Подключение SIM-карты

Для обеспечения возможности подключения роутера к Интернет через сотовую связь понадобится SIM-карта, при необходимости сбросьте PIN-код.

Для обеспечения возможности подключения роутера к сети Интернет через сотовую связь необходимо выполнить следующие действия:

- 1. Выньте лоток из устройства, нажав на соответствующую кнопку;
- 2. Полностью извлеките лоток, потянув его на себя;
- 3. Поместите <u>SIM-карту в лоток;</u>

4. <u>Вставьте лоток с SIM-картой</u> в слот для SIM №1 (прорезь на торце роутера).

При необходимости резервирования Интернет-соединения, повторите все действия со второй SIM-картой и поместите её в лотке в слот для SIM №2.

Примечание: Если выключение проверки PIN-кода на SIM-карте нежелательно – обратитесь к разделу настроек Интернет-соединения в документе «Описание средств управления роутером iRZ»

Примечание: Если проверка PIN-кода SIM-карты не была выключена своевременно это всегда можно сделать через web-интерфейс роутера. Для этого обратитесь к разделу «Disable PIN» документа «Описание средств управления роутером iRZ»

ВНИМАНИЕ! Следует помнить, что лоток, помещаемый в слот для SIM-карты №1 должен быть перевёрнут так, чтобы контактная площадка SIM-карты смотрела вниз. Обратное правило действует для слота второй SIM-карты: при установке SIM-карта должна смотреть контактной площадкой вверх. Несоблюдение этого правила может привести к порче слота SIM-карты и лотка

4.2. Доступ к устройству

Доступ к устройству можно осуществить удалённо (через Интернет, после того как роутер установит связь по GPRS/EDGE/3G) и локально (используется кабель Ethernet), соединив напрямую роутер с компьютером.

Рис. 4.1. Блок-схема работы устройства

4.2.1. Доступ к web-интерфейсу

Для получения доступа к web-интерфейсу роутера требуется любой стандартный Интернет-браузер, поддерживающий HTTP 1.0, например, Opera, Firefox, IE, Chrome.

Откройте браузер и выполните следующие шаги:

1. Введите IP-адрес роутера в адресную строку браузера;

🙆 Экспресс-панель - Opera			
U Opera	+		
← → Ə ⊶ http://192.168.1.	1/		

Примечание: IP-адрес доступа к настройкам роутера, используемый по умолчанию, указан на наклейке на нижней стороне корпуса роутера.

Если роутер включен, то должна появиться страница приветствия.

Страница приветствия содержит краткую информацию о состоянии устройства и сети: имя устройства (UNIT NAME), время работы устройства после включения (uptime), название оператора сотовой связи, тип GSM-связи, уровень GSM-сигнала, IP-адрес, скорость соединения, количество переданной и полученной информации и так далее

Сервер:	(1 92.168.1.1
Сообщение	IRZ-RUH3-ROUTER
Имя пользователя:	root
Пароль:	••••
	Пароль будет передан незашифрованным

2. Введите логин и пароль;

Если логин и пароль верный, то открывается доступ к основному интерфейсу управления устройством.

Примечание: Если пароль забыт или утерян, следует обратиться к разделу 4.3 «Возврат к заводским настройкам», данного руководства.

4.2.2. Интернет соединение по 3G/GSM-каналу

Для подключения роутера к сети Интернет требуется:

- ЗG-антенна, разъём антенного кабеля SMA;
- SIM-карта с пакетом доступа к Интернет, а также документация по настройкам;
- Лоток SIM-карты (поставляется с роутером).

Примечание: Если планируется подключение роутера к Интернет через Ethernet-разъём, то может потребоваться кабель (желательно САТ 5е) для соединения устройства с оборудованием провайдера

Рекомендация: Во избежание неожиданной потери связи с роутером по причине обнуления баланса необходимо заключить корпоративный договор с оператором сотовой связи с постоплатной системой расчётов

Для того чтобы роутер подключился к сети Интернет достаточно выполнить ряд действий:

- 1. Поместите SIM-карту в лоток для SIM-карт;
- 2. Поместите лоток в слот для SIM-карт (прорезь на торце роутера);
- 3. Подключите антенну;
- 4. Включите питание устройства;
- 5. Подождите от 2-х до 5-ти минут.

После этого роутер должен подключиться к сети Интернет. Для получения доступа в Интернет соедините компьютер с роутером через Ethernet-интерфейс (IP-адрес будет выдан автоматически по DHCP).

4.3. Возврат к заводским настройкам

Для возврата заводских настроек необходимо проделать следующую процедуру:

- 1. Отключите питание (роутер должен быть выключен);
- 2. Подключите питание, включите роутер;
- 3. Зажмите и держите нажатой кнопку «RESET» (на рисунке 3.2 обозначена цифрой «13»);
- 4. В течение 25 секунд, светодиоды «USR1», «USR2» и «USR3» должны моргнуть 3 раза;
- 5. Это означает, что настройки изменены и можно отпустить кнопку «RESET».

После этого, на роутер будут установлены заводские настройки. Обратите внимание, что IP-адрес роутера в этом случае – **192.168.1.1**

4.4. Монтаж устройства

Роутер RUH3 имеет в нижней части корпуса специальные пазы, поэтому он крепится на DIN-рейку без каких-либо дополнительный приспособлений:

1. Возьмите роутер и просто защелкните нижней его частью на DIN-рейку;

Второй вариант монтажа предполагает более компактное боковое крепление роутера (см. далее). На рисунке показан комплект для фиксации устройства на DIN-рейку:

- 1. Монтируемое устройство (например, модем или роутер);
- 2. Фиксатор для DIN-рейки;
- **3. Винты** <u>2 штуки</u>.

Далее следует:

- 1. Возьмите <u>фиксатор и прикрепите его</u> к боковой части роутера в месте, с отверстиями для винтов;
- 2. И прикрутите его винтами;
- 3. После этого вы можете <u>установить ваше устройство на DIN-рейку</u>.

Для монтажа на стене, в нижней части роутера есть специальные отверстия для креплений. Расстояние между отверстиями составляет 90 мм. Предполагается как горизонтальное, так и вертикальное крепление.

Рис. 4.2. Установочный чертеж

При монтаже роутера на стену вы можете использовать специальную накладку, приведенную сверху. Предварительно распечатав и вырезав рисунок. Данная накладка позволит быстро определить расстояние для отверстий, без каких-либо дополнительных измерений.

Внимание: Принтеры могут искажать настоящие размеры при печати. После распечатки страницы, убедитесь что приведенная шкала в рисунке (размер указан в сантиметрах), совпадает с реальной.

4.5. Функционал программного обеспечения

Таблица 4.1. Описание функционала роутера

Название	Краткое описание	Разъяснение назначения и принципа работы
Основные функці	1 <u>11</u>	
OpenVPN	Средство организации защищённой сети	Служба OpenVPN является одной из основных служб, определяющих функционал роутера iRZ. Служба OpenVPN многогранна и ее настройка зависит от конкретного случая применения. Ключевыми возможностями являются: возможность организации защищённого канала данных объединение множества географически разнесённых точек в едином виртуальном пространстве (виртуальная IP-сеть) сокращение затрат на внешние IP-адреса за счёт смены роли узлов на момент подключения (клиент- сервер)
2 SIM	Резервирование SIM-карты	Защищает от потери связи с объектом за счёт автоматического перехода на вторую SIM-карту
Serial Port	Обработка данных СОМ-порта	Обеспечивает и контролирует работу с данными, проходящими через СОМ-порт. Определяет основной функционал роутера благодаря возможности организации прозрачного канала связи между подключённым устройством и удалённым объектом (диспетчерской, либо другим устройством)
<u>Развертывание и</u>	защита сети	
IPSec	Защита передаваемой информации	Высоконадёжное средство защиты информации, часто используемое в банковских коммуникациях Позволяет создать связь точка-точка между двумя узлами, и одновременно объединить разнесённые в пространстве подсети.
Firewall	Встроенный сетевой экран	Сетевой экран является одним из главных компонентов любого сетевого пограничного устройства. Обеспечивает защиту от проникновения во внутреннее сетевое пространство, к которому подключён роутер. Так же может решать задачи, подобные перенаправлению портов (port forwarding)

Таблица 4	1.1. Описание функционала роутера (продолжени	e)
		Т

Название	Краткое описание	Разъяснение назначения и принципа работы	
GRE	Туннелирование данных по схеме точка-точка	Средство организации виртуального канала связи между двумя узлами в IP-сети. Может быть использовано для объединения сетей.	
DHCP	Служба предоставления ІР-адресов	Обеспечивает и контролирует адресное пространство сети, к которой подключён роутер.	
Port Forwarding	Проброс ТСР/UDР-портов	Позволяет установить связь с устройствами, находящимися во внутренней IP-сети, к которой подключён роутер путём перенаправления трафика с внешнего интерфейса на заданный изначально внутренний узел.	
Static Routes	Статическая маршрутизация	Запоминает указанные пользователям маршруты к подсети, либо узлу.	
Резервирование и сбоеустойчивость			
Watchdog	Сторожевой таймер	Постоянно контролирует состояние операционной системы на предмет зависания. Функция актуальна в решениях с повышенным требованием к сбоеустойчивости	
Reserve Link	Резервирование Интернет-канала	Позволяет использовать GSM-соединение в качестве резервного канала при отсутствии проводного подключения к Интернет.	
USB-LAN	Дополнительный Ethernet-интерфейс по USB	Обеспечивает возможность использовать USB-интерфейс в качестве сетевого (Ethernet) интерфейса. Может быть включён в эксплуатацию функцией Reserve Link.	
Alias	Виртуальный IP-адрес на основном Ethernet	Позволяет использовать на одном физическом Ethernet-интерфейсе второй IP-адрес.	
Daily Reboot	Ежедневная перезагрузка	Может быть использована для ежедневной перезагрузки роутера. Используется в качестве превентивной меры предотвращения зависания устройства.	
Backup/Restore	Сохранение / восстановление конфигурации	Обеспечивает сохранность всех настроек устройства и позволяет их восстанавливать на этом, либо других устройствах.	

Таблица 4.1. Описание функционала роутера (продолжение)

Название	Краткое описание	Разъяснение назначения и принципа работы		
VRRP	Резервирование основного шлюза сети	Протокол VRRP разработан для обеспечения возможности поддерживать работоспособность сети за счёт использования нескольких взаимозаменяющих друг друга роутеров в случае отказа одного из них		
Управление, обсл	Управление, обслуживание и диагностика			
Web-интерфейс	Удалённый доступ к web-интерфейсу	Основное средство управления, настройки и мониторинга состояния роутера		
Telnet	Удалённый доступ к консоли	Предоставляет пользователю возможность управления роутером с помощью команд Linux. Использование консоли управления значительно расширяет возможности управления роутером. Примечание: со списком доступных команд можно ознакомиться в документе «Средства управления роутером iRZ»		
SSH	Защищённый удалённый доступ к консоли	Аналог Telnet, весь ввод и вывод информации осуществляется по защищённому каналу		
SNMP	Мониторинг состояния по сети	Специализированный протокол управления и мониторинга состояния сетевых устройств. В текущей версии позволяет только наблюдать за статусом и состоянием интерфейсов, а так же получать дополнительную информацию об устройстве		
Send Report	Генерирование всей отладочной информации	Страница отправки отладочной информации. Рекомендуется к отправке при обращении в службу тех. поддержки iRZ для сокращения времени определения проблемы		
Ping Test	Проверка связи с узлом	Стандартная команда проверки связи с узлом на уровне IP, может быть вызвана через web-интерфейс		
System Log	Служба регистрации системных событий	Страница системного журнала позволяет отслеживать все системные события. Доступны несколько режимов фиксирования сообщения.		
Connection Log	Служба регистрации Интернет-соединений	Журнал Интернет-соединения. Позволяет получить информацию о прошедших подключениях и ошибках соединения.		

Тарлица 4.1. Описание функционала роутера (продолжени	Таблица 4.1.	Описание	функционала роутера	(прололжение)
--	--------------	----------	---------------------	---------------

Название	Краткое описание	Разъяснение назначения и принципа работы		
Расширение функционала				
Startup Script	Сценарий автозапуска	Позволяет существенно расширить встроенный функционал роутера. Команды/сценарии, сохранённые на этой странице будут выполняться при каждом запуске устройства.		
IP-Up Script	Сценарий автозапуска	Аналог Startup-Script, но запуск сценария/команды происходит при успешном GPRS-подключении		
IP-Down Script	Сценарий автозапуска	Выполняется при отключении GPRS-соединения		
Дополнительные функции				
Send SMS	Отправка пользовательского SMS-сообщения	Позволяет отправить короткое сообщение на заданный номер. Поддерживается только латиница.		
Disable PIN	Отключение проверки PIN-кода на SIM-карте	Отключает на SIM-карте защиту доступа по PIN-коду		
NTP / Clock	Настройка часов и режима их синхронизации	Позволяет указать точное время, а так же настроить интегрированный «сервер времени» NTP. Поддерживается синхронизация с внешними корневыми NTP-серверами		
Unit Name	Уникальное имя устройства	Строка, указанная на данной странице призвана сделать роутер узнаваемым в рамках проекта		

5. Контакты и поддержка

Новые версии прошивок, документации и сопутствующего программного обеспечения можно получить, обратившись по следующим контактам:

сайт компании в Интернете: тел. в Санкт-Петербурге: e-mail: www.radiofid.ru +7 (812) 318 18 19 support@radiofid.ru

Наши специалисты всегда готовы ответить на все Ваши вопросы, помочь в установке, настройке и устранении проблемных ситуаций при эксплуатации оборудования.

В случае возникновения проблемной ситуации, при обращении в техническую поддержку, следует указывать версию программного обеспечения, используемого в роутере. Так же рекомендуется к письму прикрепить журналы запуска проблемных сервисов, снимки экранов настроек и любую другую полезную информацию. Чем больше информации будет предоставлено сотруднику технической поддержки, тем быстрее он сможет разобраться в сложившейся ситуации.

Примечание: Перед обращением в техническую поддержку настоятельно рекомендуется обновить программное обеспечение роутера до актуальной версии.

Внимание! Нарушение условий эксплуатации (ненадлежащее использование роутера) лишает владельца устройства права на гарантийное обслуживание.