

Руководство пользователя

GSM/3G/LTE-роутеры серии R2: iRZ RU21

Содержание

1. Введение	3
1.1. Описание документа	3
1.2. Термины и сокращения	4
2. Информация об устройстве	5
2.1. Назначение	5
2.2. Стандарты связи	5
2.3. Характеристики аппаратной части	6
2.4. Физические характеристики	6
2.5. Электрические характеристики	7
2.6. Условия хранения и эксплуатации	7
2.7. Меры предосторожности	8
2.8. Функциональная схема устройства	9
3. Внешний вид и интерфейсы	10
3.1. Внешний вид	10
3.1.1. Разъемы и внешние элементы	10
3.1.2. Этикетка	12
3.1.3. Индикация роутера	14
3.2. Разъемы и интерфейсы	16
3.2.1. Разъем питания	16
3.2.2. Разъёмы локальной сети	17
3.2.3. Разрывной клеммный коннектор	18
3.2.4. Разъем DB9 (СОМ-порт)	19
3.2.5. Антенны	20
3.2.6. Кнопка сброса	20
4. Подготовка к работе	21
4.1. Проверка работоспособности роутера	21
4.2. Подключение	21
4.3. Установка SIM-карт	22
5. Использование	23
5.1. Настройка локальной сети	23
5.2. Настройка внешней сети	25
5.3. Настройка подключения к сотовой сети	28
5.4. Мониторинг, управление, шифрование	30
5.5. Работа с GPIO	31
6. Контакты	34

1. Введение

1.1. Описание документа

Данный документ содержит разъяснительную информацию о технических характеристиках роутеров **iRZ RU21** серии R2, а также информацию для быстрой настройки устройств.

Дата публикации	Изменения
21.03.2019	
28.11.2019	PoE, Modbus
26.05.2020	Установка SIM, Этикетка
12.10.2020	Работа с GPIO
30.04.2021	Антенны, Мониторинг, управление, шифрование
09.09.2022	Стандарты связи
13.09.2022	Проверка работоспособности роутера

1.2. Термины и сокращения

Роутер — маршрутизатор;

- 2G общее название группы стандартов сотовой связи GPRS, EDGE;
- 3G общее название группы стандартов сотовой связи UMTS, HSDPA, HSUPA, HSPA+;
- 4G общее название группы стандартов сотовой связи LTE;

Сервер — этот термин может быть использован в качестве обозначения для:

- серверной части программного пакета используемого в вычислительном комплексе;
- роли компонента, либо объекта в структурно-функциональной схеме технического решения, развёртываемого с использованием роутера;
- компьютера, предоставляющего те или иные сервисы (сетевые службы, службы обработки и хранения данных и прочие);

Внешний IP-адрес — IP-адрес в сети Интернет, предоставленный компанией-провайдером услуг связи в пользование клиенту на своём/его оборудовании для обеспечения возможности прямой связи с оборудованием клиента через сеть Интернет;

Фиксированный внешний IP-адрес — внешний IP-адрес, который не может измениться ни при каких условиях (смена типа оборудования клиента и др.) или событиях (переподключение к сети провайдера и др.); единственной возможностью сменить фиксированный IP-адрес является обращение в форме заявления к компании-провайдеру;

Аутентификация — процедура проверки подлинности пользователя/клиента/узла путём сравнения предоставленных им на момент подключения реквизитов с реквизитами, соотнесёнными с указанным именем пользователя/логином в базе данных;

Web-интерфейс роутера — средство управления, встроенное в роутер и обеспечивающее возможность контролировать и настраивать его функции, а также наблюдать за состоянием этих функций;

Удалённое устройство (удалённый узел) – устройство, территориально удалённое от места, либо объекта/узла, обсуждаемого в конкретно взятом контексте;

Локальная сеть — система, объединяющая несколько компьютеров в пределах одного помещения, здания или нескольких близко расположенных зданий одного предприятия. Для соединения компьютеров могут использоваться кабели, телефонные линии или беспроводные каналы;

Внешняя сеть (VLAN) — топологическая («виртуальная») локальная компьютерная сеть. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным членам группироваться вместе независимо от их физического местонахождения, даже если они не находятся в одной физической сети;

ИБП (UPS) — источник бесперебойного питания.

2. Информация об устройстве

2.1. Назначение

ñ

Роутер является многопрофильным радиотехническим абонентским устройством, работающим в сетях сотовой связи. Роутер позволяет решать задачи по передаче, приёму, защите информации и поддержке компьютерной сети.

2.2. Стандарты связи

Таблица 1. Стандарты сотовой связи

Модель	GPRS / EDGE	UMTS	HSDPA / HSUPA	HSPA+	LTE
RU21	да	да	да	да	_

Характеристики моделей могут меняться производителем без предварительного уведомления

้ฏ

2.3. Характеристики аппаратной части

Характеристики моделей могут меняться производителем без предварительного уведомления

Таблица 2. Характеристики аппаратной части

Тип	Характеристика
Процессор	MIPS 24KEc 580 Mhz
Разъем Ethernet	4 x 10/100 Мбит/сек
Разъем DB9	RS232
Разрывной клеммный коннектор	7 x GPIO, питание, RS485
Слот SD-карты	MicroSDHC
Аппаратная версия 2.х	
Динамическое ОЗУ	128 МБ
Объем flash-памяти	32 МБ
Аппаратная версия 1.х	
Динамическое ОЗУ	64 МБ
Объем flash-памяти	16 МБ

2.4. Физические характеристики

- Габаритные размеры изделия (с учётом разъёмов) не более 121х118х40 мм (ДхШхВ).
- Вес изделия не более 300 г.
- Материал корпуса алюминий.
- Степень защиты корпуса IP30.
- Диапазон рабочих температур от -40°С до +65°С.
- Устройство сохраняет свою работоспособность при относительной влажности не более 80% при температуре 25°C.

2.5. Электрические характеристики

Рабочие характеристики электропитания:

- напряжение питания от 8 до 30 В (постоянный ток)
- ток потребления не более:
 - при напряжении питания +12 В 1000 мА;
 - при напряжении питания +24 В 500 мА;
- Passive PoE-IN на порту Port 1
 - напряжение питания РоЕ-IN от 8 до 30 В

GPIO1-7 в режиме «вход»:

- диапазон напряжения уровня «О» (низкого уровня) 0...0,3 В;
- диапазон напряжения уровня «1» (высокого уровня) 1,9 В... Vin;
- максимальное допустимое значение напряжения на входе 30 В

GPIO1-7 в режиме «выход»:

Максимальный суммарный ток нагрузки на все GPO порты не должен превышать 300 мА

- максимальный ток отдачи на GPIO1 GPIO5 3 мА;
- максимальный ток отдачи на GPIO6 GPIO7 100 мА;

(j

При использовании GPIO в режиме "выход" при напряжении питания +12 В ток потребления возрастает на 300 мА. Следует учитывать это при выборе блока питания.

2.6. Условия хранения и эксплуатации

Устройство должно хранится в сухом, влагозащищённом месте. Должен быть исключён риск влияния статического напряжения (молния, бытовая статика).

Класс защиты от проникновения соответствует ІРЗО ГОСТ 14254-2015.

Допустимая вибрация

Устройство может сохранять прочностные характеристики при воздействии нагрузок, соответствующих группе исполнения изделий по стойкости к механическим факторам **M5** по **ГОСТ 25467-82** и может использоваться в аппаратуре, работающей на ходу, устанавливаемой на тракторах и гусеничных машинах и водном транспорте (быстроходные катера, суда на подводных крыльях и т.п.), а также на технологическом оборудовании и сухопутном транспорте, если частота вибрации превышает 80 Гц.

Виброизоляционные элементы отсутствуют.

2.7. Меры предосторожности

Ограничения на использование роутера вблизи других электронных устройств:

- выключайте роутер в больницах или в непосредственной близости от медицинских устройств (кардиостимуляторов, слуховых аппаратов и др.) – роутер может создавать помехи для работы оборудования;
- выключайте роутер вблизи автозаправочных станций, химических предприятий, мест проведения взрывных работ роутер может создавать помехи для работы оборудованию;
- выключайте роутер в самолетах, примите меры против случайного включения;
- на близком расстоянии роутер может создавать помехи для работы телевизоров, радиоприемников и др.

Предохраняйте роутер от воздействия пыли и влаги.

Соблюдайте допустимые нормы питания и вибрации в месте установки устройства.

2.8. Функциональная схема устройства

Рис. 1. Функциональная схема

- SMA-разъемы для внешних антенн;
- модули связи (GSM);
- СРU (центральный процессор) + интегрированные функции (Memory, Flash);
- Ethernet-интерфейсы (LAN 4xRJ45);
- разъем DB9 RS232;
- разрывной клеммный коннектор (Terminal Block) GPIO, RS485;
- держатели SIM-карт 1/2;
- слот для SD-карт;
- блок индикации работы светодиоды (LEDs);

3. Внешний вид и интерфейсы

3.1. Внешний вид

3.1.1. Разъемы и внешние элементы

Роутер исполнен в промышленном варианте - прочном и лёгком алюминиевом корпусе.

Рис. 2. Вид сзади

На рисунке цифрами обозначено:

- 1. Слот для SD-карт;
- 2. Разъём SMA для GSM-антенны Main (основная, прием и передача сигнала);
- 3. Разъем SMA для GSM-антенны AUX (дополнительная, только прием сигнала);
- 4. Порты Ethernet 1-4;
- 5. Кнопка сброса настроек;
- 6. Разъем питания MicroFit4

Рис. 3. Вид спереди

На рисунке цифрами обозначено:

- 1. Индикатор активности SIM1;
- 2. Индикатор активности SIM2;
- 3. Слот SIM1;
- 4. Слот SIM2;
- 5. Индикаторы состояния работы роутера;
- 6. Разрывной клеммный коннектор;
- 7. Индикатор активности RS485;
- 8. Интерфейс RS232;
- 9. Индикатор активности RS232
- 10. Индикаторы работы ИБП CH, DIS (при наличии ИБП)
- 11. Кнопка выключения устройства ВАТ (при наличии ИБП)

3.1.2. Этикетка

Этикетка выполнена в виде наклейки и расположена на нижней стороне роутера. На этикетке содержится основная информация об устройстве, а также информация, необходимая для начала работы.

Серия: R2 MAC: F0:81:AF:54:56:98 HW version: 1.0 IP: 192.168.1.1 Login: root Password: root 8-30VDC

Сделано в России

Рис. 4. Этикетка

Таблица З. Информация на этикетке

Основная информация	Наименование модели, серийный номер в виде штрих-кода, серийный номер в буквенно-цифровом виде, служебный QR- код
MAC Address	МАС-адрес, по которому идентифицируется устройство
IP	IP-адрес, по которому доступно устройство при подключении
Login	Имя пользователя
Password	Пароль
HW version	Аппаратная версия
QC	Контроль качества
8-30 VDC	Напряжение питания от 8 до 30 В (постоянный ток)

Аппаратная версия.

Аппаратная версия записывается в виде двух цифр, разделенных точкой.

Первая цифра обозначает версию процессорного модуля роутера, а вторая – номер ревизии платы.

- 1.х процессорный модуль с объемом flash памяти 16 Мб и ОЗУ 64 Мб
- 2.х процессорный модуль с объемом flash памяти 32 Мб и ОЗУ 128 Мб
- х.5 пятая ревизия материнской платы
- х.8 восьмая ревизия материнской платы

3.1.3. Индикация роутера

Индикация роутера расположена на передней панели.

Port 1-4 (индикаторы состояния портов LAN1-4)

• Не горит	Кабель не подключен
* Мигает зелёным	Идет передача данных
• Горит зелёным	Кабель подключен

PWR (индикатор питания)		
∘ Не горит	Устройство выключено	
• Горит зелёным	Устройство включено, рабочий режим	
* Мигает зелёным	Устройство включено, загрузка или обновление ПО	

Connect (индикатор сети сотовой связи)		
• Не горит	Соединение не установлено	
• Горит красным	Установлено соединение 2G	
• Горит зелёным	Установлено соединение 3G	
* Мигает зелёным	Установлено соединение 4G (LTE)	

Signal (индикатор уровня соединения)

• Не горит	Соединение не установлено
• Горит красным	Низкий уровень сигнала
• Горит желтым	Средний уровень сигнала
• Горит зелёным	Высокий уровень сигнала

Индикатор работы SIM-карты 1 / 2

• Не горит

SIM-карта не используется

• Горит зелёным

SIM-карта используется

Индикатор работы RS485 / RS232

• Не горит	Интерфейс не используется
• Горит красным	Идет передача данных
• Горит зелёным	Идет прием данных

3.2. Разъемы и интерфейсы

3.2.1. Разъем питания

Разъём питания типа Microfit4 предназначен для подключения к роутеру источника питания. Требования к источнику: постоянное напряжение от 8 до 30 В, ток не менее 1 А при напряжении 12 В.

Рис. 5. Внешний вид разъема питания на роутере

Таблица 4. Назначение выводов разъёма питания на роутере

Контакт	Сигнал	Назначение
1	OPTO-	отрицательный полюс оптопары
2	OPTO+	положительный полюс оптопары
3	GND	отрицательный полюс напряжения питания
4	U+	положительный полюс напряжения питания

3.2.2. Разъёмы локальной сети

Разъёмы локальной сети предназначены для подключения Ethernet-устройств локальной сети и поддерживают скорость 10/100 Мбит/с.

Рис. 6. Ethernet-разъем

Таблица 5. Назначение выводов Ethernet-разъёма

Контакт	Сигнал	Назначение
1	TX+	Передача, положительный полюс
2	TX-	Передача, отрицательный полюс
3	RX	Прием, положительный полюс
4	VCC*	Вход или выход положительного напряжения питания*
5	VCC*	Вход или выход положительного напряжения питания*
6	RX-	Прием, отрицательный полюс
7	GND*	Вход или выход отрицательного напряжения питания*
8	GND*	Вход или выход отрицательного напряжения питания*

Пассивное PoE доступно для Port1

3.2.3. Разрывной клеммный коннектор

На разрывной клеммный коннектор выведены последовательный интерфейс RS485 и GPIO.

		G	PIC)			V	out		RS4	185	_
57	•	•	•	•	•	•	•	57 •	•	57 •	ۍ •	
115											Ъ	
1	2	3	4	5	6	7	G	v	s	в	Α	

Рис. 7. Интерфейсный разъём

Таблица 6. Назначение выводов интерфейсного разъёма

Вывод	Назначение
1	Контакт GPIO1
2	Контакт GPIO2
3	Контакт GPIO3
4	Контакт GPIO4
5	Контакт GPIO5
6	Контакт GPIO6
7	Контакт GPIO7
G	GND – отрицательный выход питания (значение зависит от напряжения питания poyтepa)
V	VOUT – положительный выход питания (значение зависит от напряжения питания роутера)
S	Shield – контакт для экрана сигнального провода
В	Сигнал В интерфейса RS485
A	Сигнал А интерфейса RS485

Вначале следует подавать напряжение питания на роутер и только затем на GPIO. Одновременная подача напряжения питания на вход роутера и на GPIO порты ЗАПРЕЩЕНА. Несоблюдение данной рекомендации ведет к выходу роутера из строя и лишает Вас права на дальнейшее гарантийное обслуживание устройства.

Выводы V и G на разрывном клеммном коннекторе не предназначены для подачи питания на роутер из-за отсутствия защиты от переплюсовки и перенапряжения.

3.2.4. Разъем DB9 (СОМ-порт)

Разъём DB9 используется для подключения COM-порта по интерфейсу RS232.

Рис. 8. Разъем DB9 (СОМ-порт)

Таблица 7. Назначение выводов разъёма DB9

Вывод	Сигнал	Назначение
1	RS232 - DCD	Наличие несущей
2	RS232 - RXD	Прием данных
3	RS232 - TXD	Передача данных
4	RS232 - DTR	Готовность приемника
5	GND	Корпус системы
6	RS232 - DSR	Готовность источника данных
7	RS232 - RTS	Запрос на передачу
8	RS232 - CTS	Готовность передачи
9	RS232 - RI	Сигнал вызова

Роутер поддерживает возможность удалённого доступа к внешнему устройству через COM-порт по протоколу TCP/IP (RS232/RS485, Server Modbus TCP to RTU).

Подключать устройства к последовательному порту роутера разрешается только когда оба устройства находятся в выключенном состоянии

3.2.5. Антенны

В роутере предусмотрены следующие типы разъемов для антенн:

Тип разъема	Внешний вид	Назначение
Разъем SMA		для антенны GSM1 (Main)
Разъем SMA		для антенны GSM1 (AUX)

Антенна Main - основная, работает на прием и передачу сигнала.

Антенна AUX - дополнительная, работает только на прием сигнала.

Дополнительную антенну рекомендуется использовать в случаях, когда оборудование установлено в местах с множественным переотражением сигнала (плотная городская застройка) и в случаях, когда принимаемый сигнал сильно зашумлен.

В качестве дополнительной следует использовать антенну, идентичную основной. Если в Main и AUX будут установлены разные антенны, прием сигнала может ухудшиться.

Если роутер установлен в глубине здания или цеха, на цокольном этаже или в полуподвальном помещении, то лучше воспользоваться внешней выносной антенной, установленной в Main. При этом во избежание потерь сигнала длина кабеля антенны не должна превышать 10 метров.

3.2.6. Кнопка сброса

С помощью кнопки сброса можно перезагрузить роутер или вернуть роутер к заводским настройкам в случае, если доступ к нему не удаётся установить.

Для перезагрузки устройства следует нажать и удерживать кнопку 3-8 секунд.

Для возврата к заводским настройкам нужно нажать и удерживать кнопку более 8 секунд.

Отключение питания роутера в момент обновления прошивки или сброса к заводским настройкам может привести к потере работоспособности устройства.

4. Подготовка к работе

4.1. Проверка работоспособности роутера

Перед установкой роутера на месте эксплуатации следует произвести внешний осмотр и убедиться в отсутствии внешних повреждений изделия. В случае если механических или термических повреждений при внешнем осмотре не замечено, нужно провести проверку питания роутера:

- 1. Подключить кабель питания к разъёму PWR и дождаться загрузки роутера. Во время загрузки роутера индикатор питания «PWR» должен мигать.
- 2. После того как индикатор «PWR» начнет непрерывно гореть зеленым подождать в течение одной минуты и убедиться в том, что не происходит никаких изменений (индикатор продолжает непрерывно гореть, без миганий).

Если в процессе загрузки роутера индикатор «PWR» не мигает или не перестает мигать дольше 40 секунд - считается что произошел сбой в загрузке роутера. Следует нажать и удерживать кнопку Reset в течение 3-8 секунд для перезагрузки роутера.

3. В процессе загрузки могут мигать индикаторы локальной сети и Wi-Fi (при наличии). В случае подключенного Ethernet кабеля от компьютера к роутеру - будет гореть индикатор порта в который подключен кабель.

4.2. Подключение

1. Подключите необходимые антенны к разъёмам. Обратите внимание, для работы устройства антенны GSM M (Main) обязательно должны быть подключены

2. Вставьте SIM-карты в лотки

3. Подключите кабель локальной сети к портам Ethernet (Port 0...Port N в зависимости от модели роутера)

4. Подключите кабель питания к разъёму PWR

Дождитесь полной загрузки роутера. Спустя 1-2 минуты от начала загрузки роутер перестанет мигать индикатором PWR. Это означает, что операционная система роутера загрузилась и можно подключиться к роутеру через web-интерфейс.

5. Убедитесь, что IP-адрес 192.168.1.1 в локальной сети свободен, а компьютер настроен на получение адреса по DHCP или имеет адрес из диапазона 192.168.1.0/24

6. Введите в адресной строке браузера адрес http://192.168.1.1

7. Введите логин и пароль root/root

4.3. Установка SIM-карт

- 1. При помощи тонкого предмета нажмите на кнопку извлечения SIM-лотка. Для SIM 1 кнопка находится слева от лотка, для SIM2 справа.
- 2. Поместите SIM-карту в лоток.
- 3. Вставьте лоток с SIM-картой в роутер, при этом убедитесь, что лоток попал в направляющие SIM-холдера.
- 4. Обратите внимание, что SIM1 вставляется в лоток SIM-картой ВНИЗ, а SIM2 вставляется SIM-картой ВВЕРХ.
- 5. Если SIM-лоток туго вставляется, значит в направляющие он не попал. В этом случае следует его аккуратно извлечь и попробовать снова.

5. Использование

ភ្ល

5.1. Настройка локальной сети

Раздел Local Network на вкладке Network предназначен для настройки локальных Ethernet-портов роутера. В роутерах iRZ имеется возможность настроить WAN-порт таким образом, чтобы он работал, как локальный Ethernet-порт и наоборот — все LAN порты превратить в WAN.

На рисунке ниже представлен пример объединения Ethernet-портов в VLAN (виртуальную локальную сеть). Поскольку в данном примере настроено два VLAN, то на странице показаны две группы настроек – для виртуальных сетей «lan» и «lan84» (названия задаются автоматически или в ручную — поле VLAN ID). Чтобы добавить новый VLAN, нажмите на кнопку **Add VLAN** внизу страницы, а чтобы удалить – нажмите кнопку **Remove**, в соответствующей группе настроек.

Для сохранения выполненных настроек используйте кнопку **Save**. При переходе на другие страницы разделов все выполненные, но не сохраненные настройки будут сброшены!

		Remove
CPU port	VLAN ID	Switch Ports
eth0 •	1	✓ PORT1 ✓ PORT2 ✓ PORT3 □ PORT4
IP	Mask	MAC
192.168.1.1	255.255.255.0	Leave blank to use hardware default
Local Network (lan84)		Remove
Local Network (lan84)		Remove
Local Network (lan84)	VLANID	Switch Ports
Local Network (lan84) CPU port eth1 •	VLAN ID 84	Remove Switch Ports □ PORT1 □ PORT2 □ PORT3 ♥ PORT4
Local Network (lan84) CPU port eth1 •	VLAN ID 84 Mask	Switch Ports

Рис. 10. Вкладка Network, раздел Local Network

Таблица 8. Настройки Network → Local Network

Поле	Описание
CPU Port	Выбор порта процессора, который будет назначен на VLAN. Например, в роутерах серии R4 доступны два порта Ethernet 1Gbit: ETH0 и ETH1. По умолчанию, ETH0 – это четыре локальных порта, а ETH1 – один WAN-порт. Однако пользователь с помощью данной настройки может распределить порты между физическими разъемами самостоятельно.
VLAN ID	Указание номера VLAN. Изначально номер задается автоматически самим устройством, однако пользователь имеет возможность его изменить.
Switch Ports	Выбор физических портов, которые будут добавлены в VLAN
IP	IP-адрес роутера для созданного VLAN
Mask	Маска сети роутера для созданного VLAN
MAC	МАС адрес, можно задавать в ручную

Более подробно см. в «Руководство пользователя по настройке роутеров iRZ».

5.2. Настройка внешней сети

Раздел Wired Internet на вкладке Network предназначен для настройки WAN-порта роутера в рамках VLAN.

В роутерах iRZ имеется возможность настроить локальные порты таким образом, чтобы они работали, как WAN-порты.

Чтобы добавить новый VLAN, нажмите на кнопку Add VLAN, а чтобы удалить – нажмите кнопку **Remove**.

í)

Для сохранения выполненных настроек используйте кнопку **Save**. При переходе на другие страницы разделов все выполненные, но не сохраненные настройки будут сброшены!

При создании VLAN по умолчанию в поле **Connection Type** выставлено значение **Disabled**. Это означает, что WAN-порт логически выключен - то есть физическое подключение будет присутствовать, но роутер не будет передавать по порту никаких данных.

CPU Port	v	LAN ID	Switch Po	rts
ETH0	~	62	PORT1	PORT2 PORT3 PORT4
Connection Type	•		MAC	
Static		~	Leave bl	ank to use hardware default
IP		Mask		Gateway
Failover mana	agement			
Failover mana Ping Address	agement	Ping Interva	l (sec)	Ping Attempts

Рис. 11. Вкладка Network, раздел Wired Internet

Перечень основных настроек приведен в таблице Network → Wired Internet.

Таблица 9. Network → Wired Internet основные настройки

Поле	Описание	
CPU Port	Выбор порта процессора, который будет назначен на VLAN. Например, в роутерах серии R4 доступны два порта Ethernet 1Gbit: ETH0 и ETH1. По умолчанию, ETH0 – это четыре локальных порта, а ETH1 – один WAN-порт. Однако пользователь с помощью данной настройки может распределить порты между физическими разъемами самостоятельно.	

Таблица 9. Network → Wired Internet основные настройки

VLAN ID	Указание номера VLAN. Изначально номер задается авто устройством, однако пользователь имеет возможность ег	матически самим о изменить.			
Switch Ports	Выбор физических портов, которые будут добавлены в VLAN				
Connection Type	Тип подключения к внешним сетям через WAN-порт				
	Connection Type				
	Static ~	ſ			
	Disabled	1			
	DHCP				
	Static				
	PPPoE]_			

Рис. 12. Тип соединения для WAN-порта

Тип подключения **DHCP** означает, что роутер должен получить IP-адрес, маску и адреса DNSсерверов от внешнего DHCP-сервера.

Тип подключения Static необходим для ручной установки сетевых настроек WAN-порта.

Тип подключения **PPPoE** необходим при использовании протокола с авторизацией на сервере PPPoE.

Таблица 10. Дополнител	ные настройки (поле	Connection Type)
------------------------	---------------------	--------------------------

Поле	Описание
Ping Address	IP-адрес удаленного хоста для проверки работы соединения
Ping Interval (sec)	Интервал в секундах, через который будут отправляться пакеты для проверки соединения (по умолчанию, 30 секунд)
Ping Attempts	Количество неудачных попыток соединения (по умолчанию, 3)
Use Peer DNS Server	Включение/выключение использования внешних DNS-серверов провайдера
MAC	MAC-адрес роутера для созданного VLAN. Если поле оставить пустым, то будет использоваться MAC-адрес, установленный производителем
IP	IP-адрес роутера для созданного VLAN
Mask	Маска сети роутера для созданного VLAN
Gateway	Шлюз роутера для созданного VLAN
Login	Логин, который указывается при РРРоЕ-соединении

Таблица 10. Дополнительные настройки (поле Connection Type)

Password	Пароль, который указывается при РРРоЕ-соединении
AC-name	Имя концентратора доступа, который указывается при РРРоЕ-соединении

Более подробно см. в Более подробно см. в «Руководство пользователя по настройке роутеров iRZ».

5.3. Настройка подключения к сотовой сети

Paздел Mobile Interfaces на вкладке Network предназначен для настройки подключения роутера к сетям сотовой связи.

Mobile Interfaces				
SIM1 / SIM2	QUECTEL EC25		Edit	
Enable cellular debug			Save	

Рис. 13. Вкладка Network, раздел Mobile Interfaces

Для начала редактирования настроек необходимо нажать кнопку Edit.

APN	Network Access			
	Auto 🗸	Advanced settings		
Username	Password	Auth Type		
		Any		
PIN	MTU	Force MCC MNC		
Leave blank if not needed	1400	example: 25066		
Ping Address Enter address to check connec	Ping Interval (sec) Default 30 seconds	Ping Attempts 3 by default		
Ping Address Enter address to check connec	Ping Interval (sec) Default 30 seconds	Ping Attempts 3 by default		
Use as defaultroute	Use peer DNS servers	Allow roaming		
Managa SIM				
Connection Timeout (sec)				
360				
LINN .				

Рис. 14. Настройка беспроводной сети

Для сохранения выполненных настроек используйте кнопку Save. При переходе на другие страницы разделов все выполненные, но не сохраненные настройки будут сброшены!

บี

Поле	Описание				
APN	Имя сотовой сети (APN). Необходимо, если у SIM-карты корпоративный тариф или выделенная сотовая сеть внутри провайдера				
Authentication Type	Выбор протокола идентификации SIM-карты в сети провайдера				
Network Access Mode	Выбор режима работы с сотовыми сетями				
Username	Имя пользователя для доступа в сотовую сеть провайдера				
Password	Пароль для доступа в сотовую сеть провайдера				
PIN	PIN-код SIM-карты (если установлен)				
MTU	Настройка значения MTU				
Additional PPPD Options	Указание дополнительных опций для работы протокола РРР (кроме роутеров серии R0)				
Ping Address	IP-адрес удаленного хоста для проверки работы соединения				
Ping Interval (sec)	Интервал в секундах, через который будут отправляться пакеты для проверки соединения (по умолчанию, 30 секунд)				
Ping Attempts	Количество неудачных попыток соединения (по умолчанию, 3)				
Allow Roaming	Разрешение/запрет работы SIM-карты устройства в роуминге				
Use Peer DNS Server	Включение/выключение использования внешних DNS-серверов провайдера				
Force MCC MNC	Мобильный код страны (MCC) в комбинации с мобильным кодом сети (MNC) является уникальным идентификатором сотовой сети.				
Connection Timeout (sec)	Время, которое отводится SIM-карте на подключение к сотовому оператору, по истечении данного времени роутер перезагружает сотовый модуль по питанию и дозвон начинается заново, измеряется в секундах				
Primary SIM	Указывает какая из SIM карт является приоритетной (только для одномодульных роутеров)				
Return to Primary SIM After (sec)	Указание промежутка времени, после которого роутер произведет попытку вернуться на основную SIM карту (только для одномодульных роутеров)				

Вторая SIM-карта настраивается аналогично первой. Более подробно см. в «Руководство пользователя по настройке роутеров iRZ».

5.4. Мониторинг, управление, шифрование

Доступна поддержка туннелей GRE, PPTP, EoIP, IPSec, OpenVPN, L2TPv2/v3

(i)

้ฏ

Примеры корректной конфигурации сетевых служб представлены в «Руководстве пользователя. Настройка туннелей на роутерах iRZ».

Poytep поддерживает следующие сетевые функции: DNS, DynDNS, SSH Server, TFTP Client, Wget, SNMP, DHCP Server, VRRP, Firewall, NAT, NTP Client, VLAN, динамическая маршрутизация (опционально).

Примеры корректной конфигурации сетевых служб представлены в «Руководстве пользователя. Средства управления и мониторинга на роутерах iRZ».

Примеры тонких настроек оборудования и решения специфических задач можно найти в нашей Базе знаний по ссылке faq.irz.net.

5.5. Работа с GPIO

Порты GPIO в роутерах iRZ серии R2 выведены на разрывной клеммный коннектор 12 pin, расположенный на передней панели устройства.

GPIO порты могут работать как вход (GPI), и как выход (GPO). Соответствующая конфигурация выбирается программным образом.

ĩ

Подавать напряжение на вход GPIO можно **только после включения** роутера. Дождитесь **полной** загрузки роутера (около двух минут).

На контакте VOUT напряжение появляется сразу же после подачи питания на роутер.

์กู

Несоблюдение данного требования ведёт к выходу роутера из строя и лишению владельца права на гарантийное обслуживание.

На вход GPIO нельзя подавать напряжение превышающее напряжение питания роутера.

В случае если к GPIO не подключен резистор 10 кОм - нельзя допускать разности напряжения питания роутера и напряжения, подаваемого на вход GPIO. Если резистор в 10 кОм установлен, то разность напряжения питания роутера и напряжения, подаваемого на вход GPIO, допускается.

Работа в режиме GPO

В режиме GPO все GPIO порты можно разделить на два класса:

- слаботочные (GPIO1 GPIO5),
- силовые (GPIO6, GPIO7).

Таблица 11. Электрические характеристики GPIO портов при напряжения питания роутера 12 В

Вывод (разъем)	Режим	Ток, А
GPIO	Режим нагрузки, совокупный ток	0,3
GPIO1 – GPIO5	Режим источника тока (GPO = Vin)	0,003
GPIO1 – GPIO5	Режим нагрузки (GPO = GND)	0,04
GPIO6, GPIO7	Режим источника тока (GPO = Vin)	0,1
GPIO6, GPIO7	Режим нагрузки (GPO = GND)	0,1

При подключении устройств к GPIO роутера рекомендуется последовательно с нагрузкой ставить резистор, номинал которого подбирается исходя из задачи.

Для *получения* сигнала с подключенного устройства следует в веб-интерфейсе роутера настроить GPIO на вход, а для *управления* силовой нагрузкой — на выход.

					A	1	
11	<u><</u>				БП 12В	/24B	
Цепь	КОНТ.	6		V			
VDCIN	4	⊲⇒			r		
GND	3				1		
	_			G	ŇD		
Цепь	Конт.						
RS485.A		<					
RS485.B		<>					
SHGND		<⊳					
VOUT		<>					-
GND		<⊳					
ID1		<>	2		1	100	
102		<>	2		1	100	+
103		<>	2		1	100	+
104		<>	2		1	100	+
105		<≻	2		1	100	-
106		⊲⊳	2		1	100	+
107		⊲⊳	2		1	100	-

Пример подключения устройств к роутеру приведен на схеме ниже:

Рис. 15. Пример схемы подключения устройств к GPIO роутера

Применение резисторов в схеме подключения обязательно. Номинал резисторов должен подбираться индивидуально для каждой задачи.

Для подключения электромагнитных реле рекомендуются следующие схемы подключения:

Рис. 16. Схема для подключения электромагнитных реле к GPIO1-GPIO5

Реле, подключенные к GPIO1-GPIO5, управляются уровнем «0», а противоположный контакт катушек этих реле подключается к «+» напряжения питания роутера.

Рис. 17. Схема для подключения электромагнитных реле к GPIO6, GPIO7

Реле, подключенные к GPIO6 и GPIO7, управляются уровнем «1», и противоположный контакт катушек этих реле подключается к GND.

រ្ម

Применение диодов в схеме подключения обязательно.

Реле и диоды могут быть заменены на ближайшие аналоги.

6. Контакты

Новые версии прошивок, документации и сопутствующего программного обеспечения можно получить, обратившись по следующим контактам:

Санкт-Петербург

сайт компании в Интернете	www.radiofid.ru
тел. в Санкт-Петербурге	+7 (812) 318 18 19
e-mail	support@radiofid.ru
Telegram	@irzhelpbot

Наши специалисты всегда готовы ответить на все Ваши вопросы, помочь в установке, настройке и устранении проблемных ситуаций при эксплуатации оборудования.

В случае возникновения проблемной ситуации, при обращении в техническую поддержку, следует указывать версию программного обеспечения, используемого в роутере. Так же рекомендуется к письму прикрепить журналы запуска проблемных сервисов, снимки экранов настроек и любую другую полезную информацию. Чем больше информации будет предоставлено сотруднику технической поддержки, тем быстрее он сможет разобраться в сложившейся ситуации.

Перед обращением в техническую поддержку настоятельно рекомендуется обновить программное обеспечение роутера до актуальной версии.

Нарушение условий эксплуатации (ненадлежащее использование роутера) лишает владельца устройства права на гарантийное обслуживание.